
©Charles Pecheur, RIACS / NASA Ames 1KSC Nov 2000

Verification of Intelligent Software

Charles Pecheur (RIACS / NASA Ames)

©Charles Pecheur, RIACS / NASA Ames 2KSC Nov 2000

Contents

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur, RIACS / NASA Ames 3KSC Nov 2000

Autonomous Systems

"Faster, better, cheaper" spacecrafts

=> add on-board intelligence

• From self-diagnosis
to on-board science.

• Smaller mission control crews
=> reduced cost

• Less reliance on control link
=> OK for deep space

©Charles Pecheur, RIACS / NASA Ames 4KSC Nov 2000

Model-Based Autonomy

• Based on AI technology

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of

©Charles Pecheur, RIACS / NASA Ames 5KSC Nov 2000

Example: Remote Agent

• From Ames ARA Group (+ JPL)

• On Deep Space One in May 1999 (1st AI in space!)

Model Model

©Charles Pecheur, RIACS / NASA Ames 6KSC Nov 2000

Controlled vs. Autonomous

Controller

“Valve 1 stuck” “Open valve 2”

Tester

“Here we are”“Go to Saturn” Tester

?

Controller

Planner MIRExec

©Charles Pecheur, RIACS / NASA Ames 7KSC Nov 2000

Testing intelligent software?

• Programs are much more complex

• Many more scenarios

=> testing gives low coverage

• Concurrency!
Due to scheduling,
the same inputs (test) can give
different outputs (results)

=> test results are not reliable

A.read?0

A.write!1

B.read?1

B.write!2

B.read?0

B.write!1

A.write!1

0

0

01

1 1

12

A.read?x;
A.write !x+1;

B.read?y;
B.write !y+1;

0

©Charles Pecheur, RIACS / NASA Ames 8KSC Nov 2000

Contents

Model Checking for Intelligent Software

• Why?
Intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur, RIACS / NASA Ames 9KSC Nov 2000

Model Checking

Check whether a system S satisfies a property P
by exhaustive exploration of all executions of S

• Controls scheduling => better coverage

• Can be done at early stage => less costly

• Widely used in hardware, coming in software

• Examples: Spin (Bell Labs), Murphi (Stanford)

©Charles Pecheur, RIACS / NASA Ames 10KSC Nov 2000

Model ...

Controller

Planner MIRExec

Modeling
Abstraction

Verification

©Charles Pecheur, RIACS / NASA Ames 11KSC Nov 2000

Model Checking

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

©Charles Pecheur, RIACS / NASA Ames 12KSC Nov 2000

State Space Explosion

K processes with N local states ≤ NK global states

Theory:

Practice:

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

Yes/No because ...

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

No more
memory

©Charles Pecheur, RIACS / NASA Ames 13KSC Nov 2000

Modeling

This is the tough job!

• Translation: to model checker's syntax
e.g. C —> Promela (Spin)

• Abstraction: ignore irrelevant parts
e.g. contents of messages

• Simplification: downsize relevant parts
e.g. number of processes, size of buffers

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

Model Checker
Run

Yes/No because ...
Translation
Abstraction

Simplification

©Charles Pecheur, RIACS / NASA Ames 14KSC Nov 2000

Temporal Logic

• Propositional logic + quantifiers over executions

• Example: "every request gets a response"
AG (Req => AF Resp)

Always Globally, if Req then Always Finally Resp

• Branching (CTL) vs. linear (LTL)
– different verification techniques

– neither is more general than the other

• Model checking without TL
– Assertions, invariants

– Compare systems, observers

©Charles Pecheur, RIACS / NASA Ames 15KSC Nov 2000

Symbolic Model Checking

• Manipulates sets of states,
Represented as boolean formulas,
Encoded as binary decision diagrams.

• Can handle larger state spaces (1050 and up).

• BDD computations:
– Good in average but exponential in worst case.

– Computation time depends on BDD size
=> number of variables, complexity of formulas,
but not directly state space size.

• Example: SMV (Carnegie Mellon U.)

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

1 0

x=2

y=1

©Charles Pecheur, RIACS / NASA Ames 16KSC Nov 2000

Real-Time and Hybrid

• "Classic" model checking: finite state, un-timed

• Real-time model checking: add clocks
e.g. Khronos (Verimag), Uppaal (Uppsala/Aalborg)

• Hybrid model checking: add derivatives
e.g. Hytech (Berkeley)

More complex problems & less mature tools

cl<5 cl≥4cl:=0

dx/dt=2 x≥4x:=0

©Charles Pecheur, RIACS / NASA Ames 17KSC Nov 2000

Contents

Model Checking for intelligent software

• Why?
intelligent software, how to verify it?

• What?
A bird's-eye view of model checking

• How?
Experiences in the ASE Group

©Charles Pecheur, RIACS / NASA Ames 18KSC Nov 2000

Verification of
Remote Agent Executive

• Smart executive system with AI features (Lisp)

• Modeled (1.5 month) and
Model-checked with Spin (less than a week)

• 5 concurrency bugs found, that would have been
hard to find through traditional testing

(Lowry, Havelund and Penix)

©Charles Pecheur, RIACS / NASA Ames 19KSC Nov 2000

Hunting the RAX Bug

• 18 May 1999: Remote Agent Experiment
suspended following a deadlock in RA EXEC
=> Q: could V&V have found it?

• Over-the-week-end "clean room" experiment
• => A: V&V found it... two years ago!

Similar to one of the 5 bugs found before (elsewhere)
– Highly unlikely to occur
– Never occurred during thorough testing
– Occurred in flight!

• Morale: Testing not enough for concurrency bugs!

(Lowry, White, Havelund, Pecheur, ...)

©Charles Pecheur, RIACS / NASA Ames 20KSC Nov 2000

Verification of
Model-Based Autonomy

Reasoning Engine
• Relatively small, generic

algorithm => use prover

• Requires V&V expert level
but once and for all

• At application level,
assume correctness
(cf. compiler)

Reasoning
Engine

Model

Autonomous Controller

Model
• Complex assembly of

interacting components
=> model checking

• Avoid V&V experts
=> automated translation
Not too hard because models
are abstract

Reasoning Engine + Model ???

©Charles Pecheur, RIACS / NASA Ames 21KSC Nov 2000

Verification of
Planner/Scheduler Models

• Model-based planner from Remote Agent
Models: constraint style, real-time

• Small sample model translated by hand
Subset of the full modeling language, untimed

• Compare 3 model checkers: Spin, Murphi, SMV
=> SMV much easier and faster (≈0.05s vs. ≈30s)

• Continuation (Khatib): handle timed properties
using real-time model checker (Uppaal)

(Penix, Pecheur and Havelund)

©Charles Pecheur, RIACS / NASA Ames 22KSC Nov 2000

MRMI

C
o

m
m

a
n

d

Discretized
Observations

Mode
updates

Goals
Model

Reconfig
Command

current state

Plan Execution System

High level operational plan

Livingstone

Courtesy Autonomous Systems Group, NASA Ames

 The Livingstone MIR

Remote Agent's model-based fault recovery sub-system

©Charles Pecheur, RIACS / NASA Ames 23KSC Nov 2000

Verification of
Livingstone Models

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Autonomy Verification

©Charles Pecheur, RIACS / NASA Ames 24KSC Nov 2000

Livingstone to SMV
Translation

MODULE valve
VAR mode: {Open,Closed,

StuckO,StuckC};
cmd: {open,close};

DEFINE faults:={StuckO,StuckC};
TRANS
 (mode=Closed & cmd=open) ->
 (next(mode)=Open |
 next(mode) in faults)

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

openopen closeclose

Livingstone Model SMV Model
(defcomponent valve ()
 (:inputs (cmd :type valve-cmd))
 ...
 (Closed :type ok-mode
 :transitions
 ((do-open :when (open cmd)
 :next Open) ...))
 (StuckC :type :fault-mode ...)
 ...)

Livingstone
Autonomous
Controller

SMV
Symbolic

Model Checker

©Charles Pecheur, RIACS / NASA Ames 25KSC Nov 2000

From Livingstone Models
to SMV Models

Translation program developed by CMU and Ames

• 4K lines of Lisp

• Similar nature => translation is easy

• Properties in temporal logic + pre-defined patterns

• In progress:
– more property patterns

– translate results back to Livingstone

(Simmons, Pecheur)

©Charles Pecheur, RIACS / NASA Ames 26KSC Nov 2000

• Use atmosphere from Mars to
make fuel for return flight.

• Livingstone controller developed
at NASA KSC.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.

• Latest model is 1050 states.

Application
 In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board

©Charles Pecheur, RIACS / NASA Ames 27KSC Nov 2000

Beyond Model-Based
Verification

• correct engine + correct model
≠> correct control !
– heuristic search strategies

– enough sensors/actuators?

– model approximations

• Model check everything?
Very hard!

Need (abstract) V&V model of
engine + model + spacecraft + ...

=> complex, error-prone, huge state space

Controller

MIRExec
Verified

Trusted
=> Reliable???

©Charles Pecheur, RIACS / NASA Ames 28KSC Nov 2000

Closed-Loop Verification

• Real system => accuracy.
• More control => more coverage.
• For any discrete-event controller (not only model-based).

• single step
• backtrack
• select choices
• get/set state
• ...

Engine Model

Autonomous Controller Model
Checking
Engine

Spacecraft
Simulator

Driver ...

T
E
S
T
B
E
D Exec Control API

©Charles Pecheur, RIACS / NASA Ames 29KSC Nov 2000

Model Checking Java
Java PathFinder

• Java PathFinder 1
– Translates from Java to Promela (Spin)

• Java PathFinder 2
– Explicit-state model checking.
– Works with bytecodes => handle all of Java.
– Based on custom Java Virtual Machine

• Written in Java (rapid prototyping).

• Emphasis on memory management not speed.

– Efficient encoding of states (heap, GC).

(Visser, Havelund)

©Charles Pecheur, RIACS / NASA Ames 30KSC Nov 2000

 Generic Verification
Environment

• Principle: uncouple V&V subject from V&V algo.

• Common denominator of several V&V projects.

• Current VMs: Java, Livingstone.

Test
Model
Check

©Charles Pecheur, RIACS / NASA Ames 31KSC Nov 2000

Conclusions

Model checking:
• Autonomy needs it – testing is not enough

• General pros&cons apply:
– exhaustive... if model is small enough

– automatic verification... but tough modeling

• Works nicely on autonomy models

• Solutions inbetween testing and model checking

• Not short of tough problems:
– Real-time, hybrid, AI

– Learning/adaptive systems: after training/including training

©Charles Pecheur, RIACS / NASA Ames 32KSC Nov 2000

Pointers

• My home page
http://ase.arc.nasa.gov/pecheur
http://ase.arc.nasa.gov/pecheur/publi.html
http://ase.arc.nasa.gov/pecheur/talks.html

• JavaPathFinder
http://ase.arc.nasa.gov/jpf

• Model-Based Verification of Intelligence
AAAI Spring Symposium, Stanford, March 2001

http://ase.arc.nasa.gov/mvi

